Name:	Class:	Date:	ID: A
Electricity Review (Planet Holloway Pl	(Take at Home) Test hysics		
Multiple Choice Identify the choice that b	est completes the statement or	r answers the question.	
the other tw	To corners, have equal charge, A so that the force on B is zero B +1 Coul D	e, with B and C on oppositecorner while both B and C have a charge?	
a1.0 C b0.50 c c0.35 d d0.71 e	C C C		
	l between them at a certain poi ? n n	and charge A is +2.00 C and char int and the force on charge C is zer	
•	g force on the second charge is	nd a second charge is placed on the s 5.4 N in the positive x-direction,	

- b. 9.0 nC
- c. -9.0 μC
- d. -9.0 nC
- e. 90 nC
- 4. Two point charges each have a value of 30.0 mC and are separated by a distance of 4.00 cm. What is the electric field midway between the two charges? ($k_e = 8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$)
 - a. $40.5 \times 10^7 \text{ N/C}$
 - b. $20.3 \times 10^7 \text{ N/C}$
 - c. $10.1 \times 10^7 \text{ N/C}$
 - d. $5.1 \times 10^7 \text{ N/C}$
 - e. zero

- 5. Two point charges are separated by 10.0 cm and have charges of $+2.00 \,\mu\text{C}$ and $-2.00 \,\mu\text{C}$, respectively. What is the electric field at a point midway between the two charges? ($k_e = 8.99 \times 10^9 \,\text{N} \cdot \text{m}^2/\text{C}^2$)
 - a. $28.8 \times 10^6 \text{ N/C}$
 - b. 14.4×10^6 N/C
 - c. $7.19 \times 10^6 \text{ N/C}$
 - d. $3.59 \times 10^6 \text{ N/C}$
 - e. zero
- 6. An electron (charge -1.6×10^{-19} C) moves on a path perpendicular to the direction of a uniform electric field of strength 3.0 N/C. How much work is done on the electron as it moves 15 cm?
 - a. $4.8 \times 10^{-20} \text{ J}$
 - b. $-4.8 \times 10^{-20} \text{ J}$
 - c. $1.6 \times 10^{-20} \text{ J}$
 - d. $-1.6 \times 10^{-20} \text{ J}$
 - e. zero
- 7. A proton ($+1.6 \times 10^{-19}$ C) moves 10 cm on a path in the direction of a uniform electric field of strength 3.0 N/C. How much work is done on the proton by the electrical field?
 - a. $4.8 \times 10^{-20} \text{ J}$
 - b. $-4.8 \times 10^{-20} \text{ J}$
 - c. $1.6 \times 10^{-20} \text{ J}$
 - d. $-1.6 \times 10^{-20} \text{ J}$
 - e. zero
- 8. A uniform electric field, with a magnitude of 600 N/C, is directed parallel to the positive *x-axis*. If the potential at x = 3.0 m is 1 000 V, what is the change in potential energy of a proton as it moves from x = 3.0 m to x = 1.0 m? ($q_p = 1.6 \times 10^{-19}$ C)
 - a. $8.0 \times 10^{-17} \text{ J}$
 - b. $1.9 \times 10^{-16} \text{ J}$
 - c. $0.80 \times 10^{-21} \text{ J}$
 - d. 500 J
 - e. $2.2 \times 10^{-15} \text{ J}$
- 9. In which case does an electric field do positive work on a charged particle?
 - a. a negative charge moves opposite to the direction of the electric field.
 - b. a positive charge is moved to a point of higher potential energy.
 - c. a positive charge completes one circular path around a stationary positive charge.
 - d. a positive charge completes one elliptical path around a stationary positive charge.
 - e. a negative charge moves in the direction of the electric field.
- 10. If the distance between two negative point charges is increased by a factor of three, the resultant potential energy is what factor times the initial potential energy?
 - a. 3.0
 - b. 9.0
 - c. 1/3
 - d. 1/9
 - e. 1

 $8.0 \mu F$

 $0.46 \, \mu F$

 $5.5 \mu F$

100 μC 75 μC

50 μC

 $25 \mu C$

d. $33 \mu C$

c.

d.

a.

b.

c.

e.

16. Two capacitors with capacitances of 1.5 and 0.25 μ F, respectively, are connected in parallel. The system is connected to a 50-V battery. What charge accumulates on the 1.5- μ F capacitor?

17. What is the equivalent capacitance between points \underline{a} and \underline{b} ? All capacitors are 1.0 μ F.

- a. $4.0 \, \mu F$
- b. $1.7 \,\mu\text{F}$
- c. $0.60 \, \mu F$
- d. $0.25 \,\mu\text{F}$
- e. $0.50 \, \mu F$
- 18. If $C = 36 \mu F$, determine the equivalent capacitance for the combination shown.

- a. $36 \mu F$
- b. 32 *u*F
- c. $28 \mu F$
- d. $24 \mu F$
- e. $20 \mu F$
- 19. The size of the electric current in an electrical conductor is a function of which of the following?
 - a. velocity of charge carriers
 - b. conductor cross sectional area
 - c. density of charge carriers
 - d. conductor length
 - e. All of the above choices are valid.
- _ 20. You measure a 25.0-V potential difference across a 5.00-Ω resistor. What is the current flowing through it?
 - a. 125 A
 - b. 5.00 A
 - c. 4.00 A
 - d. 1.00 A
 - e. 0.125 A
 - 21. A 60-W light bulb is in a socket supplied with 120 V. What is the current in the bulb?
 - a. 0.50 A
 - b. 2.0 A
 - c. 60 A
 - d. 7 200 A
 - e. 10 000 A

- \square 22. If a lamp has resistance of 120 Ω when it operates at 100 W, what is the applied voltage?
 - a. 110 V
 - b. 120 V
 - c. 125 V
 - d. 220 V
 - e. 280 V
 - 23. A light bulb has resistance of 240 Ω when operating at 120 V. Find the current in the light bulb.
 - a. 2.0 A
 - b. 1.0 A
 - c. 0.50 A
 - d. 0.20 A
 - e. 0.30 A
 - 24. The internal resistances of an ideal voltmeter and an ideal ammeter are respectively (*ideal* meaning the behavior of the system is not changed when using the meter):
 - a. zero and zero.
 - b. infinite and infinite.
 - c. zero and infinite.
 - d. infinite and zero.
 - e. Both resistances are finite and non-zero.
 - 25. Three resistors, with values of 2.0, 4.0 and 8.0Ω , respectively, are connected in series. What is the overall resistance of this combination?
 - a. 0.58Ω
 - b. 1.1 Ω
 - c. 7.0Ω
 - d. 14.0Ω
 - e. 19.0Ω
 - 26. Three resistors connected in parallel have individual values of 4.0, 6.0 and $10.0\,\Omega$, respectively. If this combination is connected in series with a 12-V battery and a 2.0- Ω resistor, what is the current in the 10- Ω resistor?

- a. 0.59 A
- b. 1.0 A
- c. 11 A
- d. 16 A
- e. 23 A

- 27. Two resistors of values 6.0 and 12.0Ω are connected in parallel. This combination in turn is hooked in series with a $4.0-\Omega$ resistor. What is the overall resistance of this combination?
 - a. 0.50Ω
 - b. 2.0Ω
 - c. 8.0 Ω
 - d. 22.0Ω
 - e. 34.0Ω
 - 28. Resistors of values 6.0Ω , 4.0Ω , 10.0Ω and 7.0Ω are combined as shown. What is the equivalent resistance for this combination?

- a. 2.3Ω
- b. 3.0Ω
- c. 10.7Ω
- d. 27Ω
- e. 30Ω
- 29. What is the equivalent resistance for these 3.00- Ω resistors?

- a. 1.33Ω
- b. 2.25Ω
- c. 3.00Ω
- d. 7.50Ω
- e. 9.00Ω

30. How much current is flowing in one of the $10-\Omega$ resistors?

- a. 0.8 A
- b. 2.0 A
- c. 1.6 A
- d. 2.4 A
- e. 2.8 A
- 31. If $\varepsilon = 9.0 \text{ V}$, what is the current in the 15- Ω resistor?

- a. 0.20 A
- b. 0.30 A
- c. 0 10 A
- d. 0.26 A
- e. 0.15 A
- 32. Consider the circuit shown in the figure. What power is dissipated by the entire circuit?

- a. 14 W
- b. 28 W
- c. 52 W
- d. 112 W
- e. 169 W

- 33. Resistors of values 8.0Ω , 12.0Ω , and 24.0Ω are connected in parallel across a fresh battery. Which resistor dissipates the greatest power?
 - a. the $8.0-\Omega$ resistor
 - b. the $12.0-\Omega$ resistor
 - c. the $24.0-\Omega$ resistor
 - d. All dissipate the same power when in series.
 - e. The answer depends on the internal resistance of the battery.
 - 34. What is the current through the $8-\Omega$ resistor?

- a. 1.0 A
- b. 0.50 A
- c. 1.5 A
- d. 2.0 A
- e. 2.5 A
- 35. What is the potential difference between points a and b?

- a. 6 V
- b. 8 V
- c. 12 V
- d. 24 V
- e. 27 V
- 36. In a circuit, a current of 2.0 A is drawn from a battery. The current then divides and passes through two resistors in parallel. One of the resistors has a value of 64Ω and the current through it is 0.40 A. What is the value of the other resistor?
 - a. 8.0Ω
 - b. 16 Ω
 - c. 24Ω
 - d. 32Ω
 - e. 40Ω

37. In the circuit segment shown if I = 7 mA and $Q = 50 \mu C$, what is the potential difference, $V_A - V_B$?

- a. -40 V
- b. +40 V
- c. +20 V
- d. -20 V
- e. -15 V
- 38. A 10-V-emf battery is connected in series with the following: a 2μ F capacitor, a 2Ω resistor, an ammeter, and a switch, initially open; a voltmeter is connected in parallel across the capacitor. At the instant the switch is closed, what are the current and capacitor voltage readings, respectively?

- a. zero A, 10 V
- b. zero A, zero V
- c. 5 A, zero V
- d. 5 A, 10 V
- e. 20 A, 10 V
- 39. A 10-V-emf battery is connected in series with the following: a 2-μF capacitor, a 2-Ω resistor, an ammeter, and a switch, initially open; a voltmeter is connected in parallel across the capacitor. After the switch has been closed for a relatively long period (several seconds, say), what are the current and capacitor voltage readings, respectively?

- a. zero A, 10 V
- b. zero A, zero V
- c. 5 A, zero V
- d. 5 A, 10 V
- e. 20 A, 10 V

40. A hair dryer draws 1 200 W, a curling iron draws 800 W, and an electric light fixture draws 500 W. If all three of these appliances are operating in parallel on a 120-V circuit, what is the total current drawn?

ID: A

- a. 19.4 A
- b. 20.8 A
- c. 25.4 A
- d. 36.7 A
- e. 63.8 A